19th International CODATA Conference
Category: Infoscience
Fuzzy Logic Expert Rule-based
Multi-Sensor Data Fusion for Land Vehicle Attitude Estimation
Mr. Jau-Hsiung Wang (wangjh@ucalgary.ca)
and Dr. Yang Gao
Department of Geomatics Engineering, University of Calgary, Canada, www.geomatics.ucalgary.ca
GPS-based land vehicle navigation system can provide a cost-effect navigation
solution with acceptable accuracy. But due to the signal fading in urban area,
it requires aids from other enabling sensors. A popular solution to this problem
is to integrate GPS with complementary navigation sensors such as Inertial Navigation
System (INS), which is based on dead-reckoning methodology to obtain the position
state. Based on INS mechanization, the error of velocity and position estimations
will be mainly governed by the accuracy of estimated attitude. Therefore, a
fine estimation and an effective correction of attitude error are very important
for using INS to successfully assist GPS-based navigation system. As the advent
of MEMS (Micro-Electro-Mechanical System) technology, the low-cost and small-size
accelerometers and gyroscopes are now available and adoptable for vehicular
navigation. But the trade-off is the poorer performance of relatively high instrument
bias, drift and noise. Unlike MEMS accelerometers with more stable performance,
MEMS gyroscopes currently is still limited due to high gyro drifts and complex
procedures of initial alignments for attitude determination. In contrast to
gyro, a magnetometer is able to provide absolute heading information relative
to the magnetic north without time-accumulated errors and complex initialization
processes. Even though the magnetometer measurement is still distorted by local
magnetic field and external interference, the errors not accumulating with time
provide some complementary characteristics to gyroscopes. For tilt sensing,
when vehicle is static, the accelerometer measurement containing gravity field
only can directly derive pitch and roll angle without time-accumulated errors.
This paper presents a new fuzzy logic expert rule-based multi-sensor data fusion
to estimate vehicle attitude based on the complementary characteristics of the
low-cost GPS, MEMS inertial sensors and compass. Since the performance and characteristics
of each sensor are related to vehicle dynamics, the correlation between raw
measurements and vehicle dynamics is first investigated. Then, a fuzzy logic
rules-based decision-making system is developed for the classification of vehicle
dynamics. The knowledge of specific physical shortcomings and strengths of each
sensor modality in the corresponding status of vehicle motion will be used as
a teacher or an expert to design the fusion rules for weighting and combing
the attitude estimations from each sensor. Field test of vehicle runs on several
routes with different ruggedness will be performed to examine the accuracy of
vehicle attitude estimated by the proposed system. The performance improvement
of the proposed system comparing to the use of stand-alone MEMS inertial sensors
would also be discussed.